the corrosion was found, and as appropriate, remediate the conditions the operator finds in accordance with § 192.933.

- (4) Post-assessment evaluation and monitoring. An operator's plan must provide for evaluating the effectiveness of the ICDA process and continued monitoring of covered segments where internal corrosion has been identified. The evaluation and monitoring process includes—
- (i) Evaluating the effectiveness of ICDA as an assessment method for addressing internal corrosion and determining whether a covered segment should be reassessed at more frequent intervals than those specified in §192.939. An operator must carry out this evaluation within a year of conducting an ICDA; and
- (ii) Continually monitoring each covered segment where internal corrosion has been identified using techniques such as coupons, UT sensors or electronic probes, periodically drawing off liquids at low points and chemically analyzing the liquids for the presence of corrosion products. An operator must base the frequency of the monitoring and liquid analysis on results from all integrity assessments that have been conducted in accordance with the requirements of this subpart, and risk factors specific to the covered segment. If an operator finds any evidence of corrosion products in the covered segment, the operator must take prompt action in accordance with one of the two following required actions and remediate the conditions the operator finds in accordance with § 192.933.
- (A) Conduct excavations of covered segments at locations downstream from where the electrolyte might have entered the pipe; or
- (B) Assess the covered segment using another integrity assessment method allowed by this subpart.
- (5) Other requirements. The ICDA plan must also include—
- (i) Criteria an operator will apply in making key decisions (e.g., ICDA feasibility, definition of ICDA Regions, conditions requiring excavation) in implementing each stage of the ICDA process:
- (ii) Provisions for applying more restrictive criteria when conducting

ICDA for the first time on a covered segment and that become less stringent as the operator gains experience; and

(iii) Provisions that analysis be carried out on the entire pipeline in which covered segments are present, except that application of the remediation criteria of §192.933 may be limited to covered segments.

[68 FR 69817, Dec. 15, 2003, as amended by Amdt. 192–95, 69 FR 18232, Apr. 6, 2004]

§ 192.929 What are the requirements for using Direct Assessment for Stress Corrosion Cracking (SCCDA)?

- (a) Definition. Stress Corrosion Cracking Direct Assessment (SCCDA) is a process to assess a covered pipe segment for the presence of SCC primarily by systematically gathering and analyzing excavation data for pipe having similar operational characteristics and residing in a similar physical environment.
- (b) General requirements. An operator using direct assessment as an integrity assessment method to address stress corrosion cracking in a covered pipeline segment must have a plan that provides, at minimum, for—
- (1) Data gathering and integration. An operator's plan must provide for a systematic process to collect and evaluate data for all covered segments to identify whether the conditions for SCC are present and to prioritize the covered segments for assessment. This process must include gathering and evaluating data related to SCC at all sites an operator excavates during the conduct of its pipeline operations where the criteria in ASME/ANSI B31.8S (incorporated by reference, see §192.7), appendix A3.3 indicate the potential for SCC. This data includes at minimum, the data specified in ASME/ANSI B31.8S, appendix A3.
- (2) Assessment method. The plan must provide that if conditions for SCC are identified in a covered segment, an operator must assess the covered segment using an integrity assessment method

§ 192.931

specified in ASME/ANSI B31.8S, appendix A3, and remediate the threat in accordance with ASME/ANSI B31.8S, appendix A3, section A3.4.

[68 FR 69817, Dec. 15, 2003, as amended by Amdt. 192–95, 69 FR 18233, Apr. 6, 2004]

§192.931 How may Confirmatory Direct Assessment (CDA) be used?

An operator using the confirmatory direct assessment (CDA) method as allowed in §192.937 must have a plan that meets the requirements of this section and of §§192.925 (ECDA) and §192.927 (ICDA).

- (a) *Threats*. An operator may only use CDA on a covered segment to identify damage resulting from external corrosion or internal corrosion.
- (b) External corrosion plan. An operator's CDA plan for identifying external corrosion must comply with §192.925 with the following exceptions.
- (1) The procedures for indirect examination may allow use of only one indirect examination tool suitable for the application.
- (2) The procedures for direct examination and remediation must provide that—
- (i) All immediate action indications must be excavated for each ECDA region; and
- (ii) At least one high risk indication that meets the criteria of scheduled action must be excavated in each ECDA region
- (c) Internal corrosion plan. An operator's CDA plan for identifying internal corrosion must comply with \$192.927 except that the plan's procedures for identifying locations for excavation may require excavation of only one high risk location in each ICDA region.
- (d) Defects requiring near-term remediation. If an assessment carried out under paragraph (b) or (c) of this section reveals any defect requiring remediation prior to the next scheduled assessment, the operator must schedule the next assessment in accordance with NACE SP0502–2008 (incorporated by reference, see §192.7), section 6.2 and 6.3. If the defect requires immediate remediation, then the operator must reduce pressure consistent with §192.933 until the operator has completed reassess-

ment using one of the assessment techniques allowed in §192.937.

[68 FR 69817, Dec. 15, 2003, as amended by Amdt. 192-114, 75 FR 48604, Aug. 11, 2010]

§ 192.933 What actions must be taken to address integrity issues?

- (a) General requirements. An operator must take prompt action to address all anomalous conditions the operator discovers through the integrity assessment. In addressing all conditions, an operator must evaluate all anomalous conditions and remediate those that could reduce a pipeline's integrity. An operator must be able to demonstrate that the remediation of the condition will ensure the condition is unlikely to pose a threat to the integrity of the pipeline until the next reassessment of the covered segment.
- (1) Temporary pressure reduction. If an operator is unable to respond within the time limits for certain conditions specified in this section, the operator must temporarily reduce the operating pressure of the pipeline or take other action that ensures the safety of the covered segment. An operator must determine any temporary reduction in operating pressure required by this section using ASME/ANSI B31G (incorporated by reference, see §192.7) or AGA Pipeline Research Committee Project PR-3-805 ("RSTRENG," incorporated by reference, see §192.7) or reduce the operating pressure to a level not exceeding 80 percent of the level at the time the condition was discovered. (See appendix A to this part for information on availability of incorporation by reference information.) An operator must notify PHMSA in accordance with §192.949 if it cannot meet the schedule for evaluation and remediation required under paragraph (c) of this section and cannot provide safety through temporary reduction in operating pressure or other action. An operator must also notify a State pipeline safety authority when either a covered segment is located in a State where PHMSA has an interstate agent agreement, or an intrastate covered segment is regulated by that State.
- (2) Long-term pressure reduction. When a pressure reduction exceeds 365 days, the operator must notify PHMSA under §192.949 and explain the reasons